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Abstract

A three dimensional polydisperse model for bubbly two-phase ¯ow around a surface ship is presented.
The Boltzmann equation for the bubble mass probability density function is evaluated using a
multigroup approach with groups of constant bubble mass. The intergroup transfer mechanisms are
bubble breakup, coalescence and the dissolution of air into the ocean, and their e�ects on the two-phase
¯ow ®eld are analyzed. A three dimensional two-¯uid model is used for each bubble mass group to
calculate the group's average gas velocity, resulting in four scalar equations per group. The air
entrainment process is modeled using simulated breaking bow waves and the steady-state evolution of
the gas bubbles for zero Froude number is obtained. It was found that intergroup transfer is very
important in these ¯ows. Some of the research areas that need further improvement for the numerical
prediction of polydisperse two-phase ¯ow around a ship have been identi®ed and are discussed. # 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The bubbly two-phase ¯ow around a surface ship has attracted increasing attention since

World War II. On one hand, the presence of bubbles can modify important design parameters
such as ship drag, the wave ®elds and propeller e�ciency. On the other hand, the bubbly wake

and the signature generated by the ship strongly depend on the two-phase ¯ow in the region
close to the ship's hull. The presence of bubbles in the far-®eld wake can be determined by

measuring acoustic attenuation in the water, and the acoustic response will depend on the
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bubble size distribution and the population of bubbles present in the wake. Additionally, the
bubbly wake shows at the surface of the sea a characteristic signature of `white water'. Both
the bubbly wake and the white water can be used to detect and identify surface ships from
underwater and satellites, respectively.
Bubbles will be present around a ship due to the air entrained in the liquid by the e�ect of

the ship's movement and because of the air already present in the ocean due to wind-induced
breaking and spilling waves. Breaking bow and stern waves, spilling waves, boundary layer air
entrainment and propeller cavitation and/or ventilation are some of the ship-induced air
bubble production mechanisms. There is a fair amount of uncertainty in these air entrainment
mechanisms (Melville, 1996). One purpose of this paper is to present a three dimensional
model for the transport of bubbles so that sensitivity of the ¯ow to bubble sources can be
assessed.
The problem of monodisperse bubbly ¯ow around a ship with background ocean air under

non-zero Froude number conditions was studied by Carrica et al. (1997), and the e�ect of the
bubble size in a monodisperse population was presented by Paterson et al. (1996), for the case
of simulated breaking waves. In both cases the studies were performed using the geometry of a
typical naval combatant, U.S. Navy frigate FF-1052, shown in Fig. 1. This ship o�ers a
complex geometry with a bulbous bow and transom stern, and it has been extensively studied
numerically for single-phase ¯ows with and without a propeller (Paterson et al., 1996; Stern et
al., 1996), and with zero and non-zero Froude number boundary conditions at the free-surface.
Some experimental data also exists for the case of single-phase ¯ow, for a scale-model FF-1052
(see for instance Rattcli�e and Lindenmuth, 1990 or Day and Hurwitz, 1980). As pointed out
by Carrica et al. (1997) no experimental published data are available for the case of two-phase
¯ow around a ship. Some studies of the acoustic response in the far wake have been

Fig. 1. U.S. Navy FF-1052 and free surface. The contour lines represent constant gas volume fraction.
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performed, several ship lengths behind the stern (Hyman, 1994), but little can be inferred about
the two-phase ¯ow around the ship from these experiments. This lack of experimental results is
not surprising, considering that model-scale ships do not entrain bubbles and data acquisition
at full-scale is very complex and expensive. As a part of a program on bubbly wakes, the Navy
is expected to perform, in the future, carefully designed experiments with two-phase ¯ow in
model-scale ships.
One of the main conclusions of the previous works is that it is necessary to develop the

ability to calculate polydisperse bubble populations to properly predict the two-phase ¯ow
around a ship, because small and large bubbles behave completely di�erent. The reason for
this can be inferred from the two-¯uid model equations that govern the motion of the bubbles.
The three-dimensional two-¯uid model consists of equations for the conservation of mass and
momentum for the continuous (liquid) and dispersed (bubbles) phases. Among the terms
included in the dispersed phase momentum equations are the virtual mass, drag, pressure, lift
and buoyancy forces. Since many of these terms depend on the bubble volume and shape, one
of the problems in bubbly ¯ows is the determination of the bubble size at each position in the
¯ow. Moreover, the bubble size distribution can be so broad that the behavior of large and
small bubbles is completely di�erent, as occurs in many buoyancy driven ¯ows. It has been
shown in the work by Paterson et al. (1996) that in the case of the ¯ow around the ship, big
bubbles tend to accumulate below the hull because they rise faster than small ones. Attempts
to account for the bubble size distribution in bubbly ¯ows have been made in the past (Guido
Lavalle et al., 1994; Sanz et al., 1995). In this paper a more general approach was developed
focusing on the bubbly ¯ow around a surface ship.
The calculation of a three dimensional polydisperse ¯ow is a formidable task that was

considered impossible with the computational resources available only a few years ago. Even
though the computers have improved considerably, the physical modeling has not followed and
more work is necessary on some very complex areas such as bubble breakup and coalescence
in presence of surfactants, as in the case of salt water.
In this paper we present a three dimensional polydisperse two-¯uid model suitable for the

prediction of two-phase bubbly ¯ow around a surface ship. The model was solved using a
multigroup approach for the case of simulated breaking waves in a U.S. Navy FF-1052 under
zero Froude number conditions (¯at surface). The model accounts for intergroup transfer
through bubble coalescence, dissolution and breakup. The weaknesses of the model are noted
through the identi®cation of the most crucial points needing further research to reliably predict
two-phase ¯ow around a surface ship.

2. Mathematical modelling

2.1. The distribution function and the bubble transport equation

The statistical description of two-phase ¯ows is developed based on the Boltzmann theory of
disperse gases. The fundamental variable is the bubble distribution function f�fff; r; t�, de®ned
so that the number of bubbles with internal variables in the range fff;fff� dfff�; located in a
volume dr around a spatial location r at time t is f�fff; r; t� dr dfff. The internal variables are
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those relevant for a particular problem, and in general ¯ows with deformed bubbles, the
bubble volume, surface area, mean perimeter and velocity must be speci®ed (Sanz et al., 1995).
For instance, if some interfacial phenomenon is taking place, such as evaporation or
condensation, the interfacial area and the velocity are important. Nevertheless, in many bubbly
¯ows the relationship between bubble volume and the other internal variables are known, or
the dependence is single-valued. For instance, we will assume that all the bubbles of volume v
have exactly the same area s, the same velocity ug and the same mean perimeter, P. This
approximation is particularly reasonable when the bubbles are small and close to spherical. In
this case (spherical bubbles) the relationships between the bubble volume and the other internal
variables are:

s ��36p�1=3v2=3;
�P ��6p2v�1=3;

ug �ug�v�: �1�
For the sake of simplicity, all the derivations will be made assuming that all the relevant
internal variables can be calculated in some way from the bubble mass, so the bubble
distribution function is described by the bubble mass, position and time. Under these
conditions, we characterize the gas/liquid ¯ow ®eld by a distribution function f(m, r, t) such
that f(m, r, t) dm dr is the number of bubbles with mass between m and m+dm, at time t and
within dr of vector position r. A similar approach, but using the particle volume as internal
variable, is frequently used in the theory of aerosols in which the gas is the continuous phase
(Williams and Loyalka, 1991), and in chemical engineering to model population distributions
(Coulaloglou and Tavlarides, 1976; Ramkrishna, 1985) and was applied to incompressible
bubbly two-phase ¯ows by Guido Lavalle et al. (1994) and Sanz et al. (1995). Notice that both
formulations are completely equivalent in the case of incompressible gases. In the case of ¯ows
where compressibility e�ects in the gas are important (as is the case of the ¯ow around a ship)
the use of the mass as an internal variable is advantageous because it is conserved under
pressure changes. By taking the mass moments of the distribution function we obtain the
following important two-phase ¯ow parameters:
bubble number density

N�r; t� �
�1
0

f �m; r; t�dm; �2�

interfacial area density

A
000
i �r; t� �

�1
0

A�m; r� f �m; r; t�dm �3�

where A(m, r) is the interfacial area of a bubble having mass m at the location r;
bubble mass density

em�r; t� �
�1
0

m f �m; r; t� dm: �4�
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The gas volume fraction, or void fraction, is related to the mass density by:

e�r; t� � em�r; t�
rg�r; t�

�5�

where rg(r, t) is the local gas density which includes the e�ects of the local pressure. The e�ect
of the surface tension has been neglected for the calculation of the void fraction, due to the
small contribution of the small bubbles to the total void fraction. However, surface tension is
accounted for in the calculation of the dissolution of bubbles.

In general, the evaluation of the distribution function is described by a partial di�erential
equation, with its boundary and initial conditions and with appropriate laws accounting for
the interaction between the bubbles with the surrounding liquid and with each other. Assuming
that the bubble velocity for a given size is known,

u � u�m; r; t�; �6�
we can write the conservation equation, i.e. the Boltzmann transport equation for the bubble
size distribution function (Guido Lavalle et al., 1994):

@ f �m; r; t�
@t

� @

@xj
�uj�m; r; t� f �m; r; t�� � @

@m

�
dm

dt
f �m; r; t�

�
�

b�m; r; t��w�m; r; t� � S�m; r; t� �7�

where b is the net source due to bubble breakup, w is the net bubble source due to coalescence
and S is a bubble production term. The third term on the left-hand side is related to the mass
change of the bubbles that is caused by condensation, evaporation or dissolution. This last
term is quite important in our case.

If we consider only binary interactions (i.e. a broken bubble splits into two smaller ones
and two bubbles can coalesce to form a bigger one), the bubble breakup term can be written
as:

b�m; r; t� �
�1
m

b�m;m00 j m0� f �m0; r; t�dm0 ÿ
�m
0

b�m0;m00 j m� f �m; r; t�dm0 �8�

where b(m, m0vm 0) is the breakup kernel and represents the probability per unit time and
mass that a bubble of mass m 0 splits creating a bubble of mass m0 and a bubble of mass m.
This probability is dependent on position through turbulence, shear stress, etc. (Clift et al.,
1978).

As no mass is lost or gained in the breakup or coalescence processes, we can use mass
conservation to rewrite the bubble breakup term as:

b�m; r; t� �
�1
m

b�m;m0 ÿm j m0; r; t� f �m0; r; t�dm0

ÿ
�m
0

b�m0;mÿm0 j m; r; t� f �m; r; t� dm0: �9�
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Using similar assumptions as in the breakup term, the coalescence term can be written as:

w�m; r; t� � 1

2

�m
0

z�mÿm0;m0�T�mÿm0;m0; r; t� dm0 ÿ
�1
0

z�m0;m�T�m;m0; r; t� dm0 �10�

where the kernel T(mÿ m 0, m 0, r, t) gives the collision probability per unit time
between bubbles of mass m 0 and m and z(m, m 0) is the probability of coalescence if a collision
occurs.

2.2. Bubble collision and coalescence

The coalescence of bubbles occurs after su�cient draining of the liquid ®lm that is formed
between two or more bubbles which are in contact. Therefore, two conditions must be met in
order to have coalescence between two (or more) bubbles: the bubbles must be in contact (i.e.
must collide), and they must remain in contact long enough to allow the liquid ®lm to drain
out (Marrucci, 1969). If a collision occurs, coalescence may not happen, however momentum
transfer between the colliding bubbles occurs. This phenomenon can be important in regions
where the gas volume fraction is high and the presence of surfactants can inhibit coalescence,
as in the case of oceanic waters. Since the gas density is much smaller than the liquid density,
in this work we will not consider momentum transfer due to collisions between particles that
do not coalesce. Additionally, only binary collision events will be considered.
The collision probability is caused by a relative velocity between the bubbles. This relative

velocity can be caused by any process that causes di�erences in the average velocities of the
bubbles, such as gravitational and transport forces and velocity gradients, or by processes that
cause turbulent or chaotic motions.
Using a geometric analysis, Sanz (1993) found that the collision probability due to the

average di�erence in velocity between the bubbles for a dense (i.e. high void fraction) bubbly
¯ow can be approximated as:

TUr
�m;m0�dm dm0 � ec

pur�m;m0��Rb�m� � Rb�m0��2
�ec ÿ e� f �m� f �m0�dm dm0 �11�

where ur(m, m 0) is the relative velocity between bubbles of mass m and bubbles of mass m 0,
and ec is the gas volume fraction at compact bubble packing and results in a correction
equivalent to the Y(e) used by Enskog for dense gases (Ferziger and Kaper, 1972). The highest
void fraction that we expect to have in the entire domain is moderate, on the order of 10%,
and the correction at this void fraction is on the order of 15%. The e�ective relative velocity at
r can be calculated as:

ur�m;m0� � 1

p�Rb�m� � Rb�m0��2
�Rb�m��Rb�m0�

0

2pr�j r j um0kr� j um ÿ um0 j�dr: �12�

Assuming that the bubble velocity gradients are constant in the range of the bubble sizes, we
can write the relative velocity as (Williams and Loyalka, 1991):

ur�m;m0� � 4

3
�Rb�m� � Rb�m0�� j r j umk� j um ÿ um0 j : �13�
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Following the developments made for the turbulent coalescence kernel in aerosols, we can
write, for the contribution of the large scale turbulence, (Williams and Loyalka, 1991):

Tt;l�m;m0; r; t� �
�

3ek

10pv

�1=2

�v�m�1=3 � v�m0�1=3�3f�m�f�m0� �14�

where e k is the dissipation of turbulent kinetic energy k. The small eddies also contribute to
the collision rate with a di�erent kernel (Prince and Blanch, 1990):

Tt;s�m;m0; r; t� � 1:4ek
1=3�d�m� � d�m0��2d�m�1=3f�m�f�m0� �15�

where the bubble volume and diameter must be calculated based on the bubble mass and the
local conditions.

When the e�ects of both mean velocity di�erences and turbulent ¯uctuations are important,
it is usual to superpose both contributions in an algebraic fashion. It is known that this
procedure gives reasonable results for low gas volume fractions.

When the gas volume fraction approaches the maximum compactness, ec, the collision
frequency must become in®nite as shown in (11), and strong coalescence will occur. For this
reason, it is also acceptable to include the compactness correction in (14) and (15) yielding the
kernel:

T�m;m0� � ec
�ec ÿ e� �Tur�m;m0� � Tt;l �m;m0� � Tt;s�m;m0��: �16�

Notice that the average relative velocity can be zero, see (13). Nevertheless, we still can have
collisions due to the turbulence kernels and to velocity gradients in each bubble size. It was
found in preliminary runs that the contribution of the turbulent terms to the total collision rate
was small for the ¯ow under consideration, and thus this e�ect was not included in the
calculations.

The probability that a collision results in a coalescence is usually related to the contact time
between the bubbles and to the liquid properties. Prince and Blanch (1990) made a simple
model accounting for this term that proved to work well for the case of bubble columns in
distilled water. Nevertheless, the modeling of the probability of coalescence is very complex
due to the large number of e�ects that in¯uence the coalescence. On one hand, turbulence and
surfactants tend to suppress coalescence, while a close packing of the bubbles at high void
fractions increases the probability of coalescence. The model presented by Prince and Blanch
(1990) will be used. In this study the probability of coalescence is:

z�m;m0� � e
ÿtm;m0

tm;m0 �17�
where t m,m 0 is the time required for coalescence between two bubbles with masses m and m 0,
and tm,m 0 is the contact time between the bubbles. The time required for coalescence is
calculated as:

tm;m0 � Cs

�
R3

m;m0rl
16s

�1=2

ln

�
h0
hf

�
: �18�
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In (18) h0 is the initial thickness of the ®lm, about 1� 10ÿ4 m (Kirkpatrick and Locket, 1974),
and hf is the critical thickness for the ®lm between bubbles for them to break, estimated to be
1� 10ÿ7 m (Thomas, 1981). Rm,m 0 is the equivalent radius for two bubbles of di�erent radii
coalescing and is de®ned as (Chesters and Ho�man, 1982):

Rm;m0 � 0:5

�
1

Rm
� 1

Rm0

�ÿ1
: �19�

In (18) Cs is a constant accounting for the e�ect of the surfactants. It is known that the
presence of surfactants tends to increase the time required for coalescence. In this work a
model in which the time required for coalescence increases uniformly for every bubble size will
be used. As observed by Prince and Blanch (1990) typical values of Cs can range on the order
of 1±104 depending on the surfactant concentration. A reasonable value is 103 for the
concentrations found in oceanic waters. It is not clear whether Cs depends only on the
surfactant concentration or if it should also depend on other variables such as the
e�ective radius. Signi®cantly, Cs, h0 and hf have a strong e�ect on the coalescence rate and
only rough estimates are used in this work. Clearly more research is needed in the area of
bubble coalescence in the presence of surfactants; nevertheless, the predicted trends should be
valid.
The contact time is calculated from the estimate of Levich (1962) of contact time for

turbulent ¯ows and the contribution due to relative velocities between the bubbles:

tm;m0 � 2�Rm � Rm0 �5=3
j ur�m;m0� j �Rm � Rm0 �2=3 � 2�Rm � Rm0 �ek1=3

�20�

where ur(m, m 0) is the relative velocity between bubbles with masses m and m 0.

2.3. Bubble breakup

We consider three breakup mechanisms in this study.

2.3.1. Turbulence induced breakup
The interactions between turbulent liquid eddies and bubbles can cause bubble breakup.

Early works on bubble and drop breakup found that there is a critical Weber number of
breakup (Hinze, 1955). This results in a critical bubble radius beyond which bubble breakup
occurs. The bubble breakup frequency is given by:

bti�m0;mÿm0 j m� � 0:055Pbek
1=3

db�m�ÿ2=3j�m�d�m0 ÿm=2� �21�
where j(m) is a weighting function, d(m 0 ÿ m/2) is a Dirac's delta function which implies that
we will allow the bubbles to split into two identical daughters and Pb is a constant. In the
work of Navarro-Valenti et al. (1991) they found that for air/water bubbly ¯ows Pb is 0.155
and j(m) is:

j�m� � H�Rb ÿ Rc� �22�
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where Rc is the critical radius for breakup and H is the Heavyside step function. As explained
by Luo and Svendsen (1996), j(m) acts in (21) to avoid unrealistic high breakup rates at small
bubbles sizes. It is usually assumed that the bubbles can only be split by eddies which are
smaller than the bubble size. In the case of two-phase bubbly ¯ow around a ship, the bubble
radii considered are very small compared to the eddy sizes present in the ¯ow, therefore no
turbulent breakup is expected. This assumption appears reasonable over all the computational
domain except near the propeller and in the boundary layer near the hull, where the turbulent
breakup could be very important. No propeller is considered in this work.

2.3.2. Breakup due to velocity gradients
Strong velocity gradients may deform the bubbles causing the breakup. The works made in

the subject were reviewed in detail by Clift (1978) and Acrivos (1983). Miksis (1981) found that
in axially symmetric shear ¯ows, the critical Weber number for breakup is

Wecr � R3
brlG

2
l

s
� 0:345 �23�

where Gl is the local liquid velocity gradient. The critical radius for bubble breakup is thus

Rc �
�
0:345s
rlG

2
l

�1=3

�24�

or for a given radius we will de®ne the breakup rate in the form:

bs�m0;mÿm0 j m� � b2
R2

b�m�
R2

b�m� � R2
c

d�m0 ÿm=2�: �25�

Eq. (25) implies that bubbles smaller than the critical radius tend not to breakup while large
bubbles tend to break with equal probability. This model is similar to the one used by
Navarro-Valenti et al. (1991). Unfortunately, to our knowledge no theoretical or experimental
information is available to estimate the constant b2. In this work we will assume that the
bubbles need to elongate before they break, and that the time required to reach that elongation
is proportional to the liquid velocity gradient, so that b2=b3Gl. Here b3 is assumed to be a
constant to be adjusted, and in this work b=0.001 was used. It should be noted that b3 could
be a function of the concentration of surfactants, the turbulence length scale and intensity, etc.,
but to the knowledge of the authors no information to estimate its value is available. More
research is needed on bubble breakup in sea water in order to construct a truly mechanistic
model of polydisperse bubbly ¯ows. However, the model used herein is expected to give
reasonable results.
At this point a hypothesis must be done to evaluate the size distribution of the daughter

bubbles. For the case of turbulent breakup, Luo and Svendsen (1996) provide a model to
calculate such a distribution. To the knowledge of the authors, in the case of shear-driven
breakup no model nor information is available and we will assume that the bubbles will break
into bubbles of half the original mass, as shown in (25).
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2.3.3. Tipstreaming (De Bruijn, 1993)
Tipstreaming of bubbles is the ejection of very small bubbles, with radii less than 50 mm

(Stone, 1994), from the tip of a deformed bubble in a shear ¯ow. Even though the
phenomenon of tipstreaming has been known from the early works of Taylor (1934) and later
Rumscheidt and Mason (1961), it was not until recent years that comprehensive and careful
experiments have been done on the subject. The conditions observed for the appearance of
tipstreaming are mainly a low viscosity ratio, l= mg/ml<0.1 (l is about 0.02 for air bubbles in
water) and the presence of surfactants. These two conditions are met in the case of bubbles in
the ocean, and the velocity gradients near the hull of a ship can be strong enough to cause
tipstreaming. Therefore, the potential e�ect of this phenomenon on the bubble size distribution
was studied. A breakup kernel similar to that of point the second mechanism was used, even
though some tipstreaming experiments evidence a smaller critical radius than that observed for
normal breakup (Stone, 1994). To estimate the breakup rate (25) was used and it was
arbitrarily assumed that the tipstreaming bubbles were separated by about 10 times the radius
of the mother bubble, resulting in:

bt�m0;mÿm0 j m� � Gl

10

R2
b�m�

R2
b�m� � r2c

d�Rb�m0� ÿ Rb�m�� �26�

where the radius of the ejected bubbles (corresponding to m 0) was assumed to be 20 or 30 mm
with the same probability. Additionally, as very small bubbles do not break, bubbles with
volumes smaller than six times the volume of the ejected bubbles were not allowed to
tipstream. This results in three bubbles for each tipstreaming event, the mother bubble plus
two tipstream small bubbles.
In general, as in the case of coalescence, the di�erent mechanisms contributing to the

breakup probability are added linearly. Nonlinear e�ects, such as the breakup produced by a
turbulent eddy hitting a deformed bubble in a shear ¯ow, are expected to be less important
and are neglected.
Clearly, more research is needed to better quantify this phenomenon, nevertheless, as before,

the parametric trends given in this study should be realistic.

2.4. Gas dissolution

The bubbles can change their mass if condensation or evaporation occurs, if they coalesce or
breakup, or if gas is lost or gained due to mass di�usion. If, in the last case, the gas is lost we
call this term dissolution. The gas di�usion into or out of a bubble can be written as (Levich,
1962; Smith and Hyman, 1987):

dm

dt
� 8�C1 ÿ C0�k2=3 j ur j1=3 R4=3

b �27�

where C1 and C0 are the gas concentrations very far away and at the bubble surface,
respectively, k is the di�usivity of air in water (2� 10ÿ9 m2/s), ur is the relative velocity
between the bubble and the liquid and Rb is the bubble radius.
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The gas concentrations are approximated using the relations:

C0 � H

�
patm ÿ rlgz�

2s
Rb
� p

�
; �28�

C1 � Hpatm �29�
where H is the Henry constant (0.000238 g/Nm) and p is the piezometric pressure.
Notice that, due to the presence of the piezometric pressure in (28), it is possible to have

bubble growth in regions of low pressure. This could happen in the stern region near the
surface or near the propeller. This causes aeration at the propeller that could be responsible for
a signi®cant amount of air entrainment in the ¯ow.

2.5. Multigroup approach

The numerical solution of (7) can be accomplished using a multigroup scheme, assuming
that all the bubbles of mass between mgÿ1/2 and mg+1/2 can be represented in a group-g by a
single bubble mass, mg. We note that mgÿ1/2 and mg+1/2 must be chosen using some adequate
criteria, such as good representation of the distribution, computational advantage, etc.
Integrating (7) between mgÿ1/2 and mg+1/2 one obtains:

@Ng

@t
� @j

N
g; j

@xj
�
�
dm

dt
f �m; r; t�

�mg�1=2

mgÿ1=2

�
�mg�1=2

mgÿ1=2

�
b�m; r; t� � w�m; r; t� � S�m; r; t��dm �30�

where the bubble ¯ux in the group-g can be calculated as

JNg; j �
�mg�1=2

mgÿ1=2
ug; j�m; r; t� f �m; r; t� dm �31�

and the group number density is de®ned as

Ng�r; t� �
�mg�1=2

mgÿ1=2
f �m; r; t� dm: �32�

As a further assumption, the distribution function, the bubble velocities, the bubble mass
exchange rate and the breakup and coalescence probability are assumed constant in each
group. Additionally, an upwinding approach is used to calculate the mass loss (or gain) rate in
(30). Under these conditions (30) can be simpli®ed to:

@Ng

@t
� @�ug;jNg�

@xj
� b�g ÿ bÿg � w�g ÿ wÿg � Sg

ÿ 1

mg�1 ÿmg

�
min

�
dm

dt
; 0

�
N�r; t�

�
g�1
� 1

mg ÿmgÿ1

�
min

�
dm

dt
; 0

�
N�r; t�

�
g

ÿ 1

mg�1 ÿmg

�
max

�
dm

dt
; 0

�
N�r; t�

�
g

� 1

mg ÿmgÿ1

�
max

�
dm

dt
; 0

�
N�r; t�

�
gÿ1
: �33�
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The mass change rate in a bubble, dm/dt, is negative for the case of condensation or gas
dissolution, and is positive in the case of evaporation or gas di�usion into the bubble. The
bubble breakup, coalescence and volume sources and losses are also integrated over each
group, resulting in the terms on the right hand side of (33). The calculation of these terms
requires the precise determination of the mass of each group. Typically two cases are possible:

1. The group masses are determined by the constant lower and upper limit masses which are
assumed to be

fm1ÿ1=2;m1�1=2; . . . ;mgÿ1=2;mgi�1=2; . . . ;mNG�1=2g �34�
where NG is the total number of groups, and the average mass for each group is:

fm1;m2; . . . ;mg; . . . ;mNGg: �35�
As an example, if the maximum and minimum bubble sizes in the distribution can be
estimated, the groups will be chosen so as to cover all the possible relevant masses.
Additionally, computational advantages can arise if the mass di�erence between the groups
is constant. It is known that this approach can cause numerical di�usion in the probability
distribution function when the mass exchange rate is large (Williams and Loyalka, 1991),
however the method has been shown to be robust.

2. The group masses are variable and dependent on the position and time, in order to follow
the characteristic lines of the bubbles. In this case, there is no transfer between the groups
due to the mass exchange rate, but the evaluation of the coalescence and breakup terms is
considerably more complicated (Williams and Loyalka, 1991). If no breakup or coalescence
occurs and the group mass is chosen such that the mass exchange rate term is zero (33)
simpli®es to:

@Ng

@t
� @�ug;jNg�

@xj
� 0: �36�

The formulation (2) of the multigroup scheme has the important advantage of low
numerical di�usion in the intergroup mass transfer. The main disadvantages are restriction
to the case with no or small bubble breakup or coalescence and the need for an additional
equation for mass conservation within each group in order to determine bubble volume:

@�rgeg�
@t
� @�ug;jrgeg�

@xj
� dm

dt
Ng: �37�

The bubble volume (necessary for the determination of the bubble mass change rate and
drag coe�cient) can be calculated from the relationship between the bubble number density
and the volume fraction in group-g:

vb;g � eg
Ng
: �38�

Approach (2) was used by Carrica et al. (1997) to obtain results for monodisperse two-
phase ¯ow around a ship with bubble dissolution.
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In the rest of this paper we will restrict ourselves to method (1), constant mass in each group.
In this case the bubble volume fraction is related to the group number density by:

e�r; t� �
XNG

g�1

mgNg�r; t�
rg�r; t�

: �39�

This multigroup model can be solved in combination with a two-¯uid model to calculate the
gas velocity ®eld for each group. The standard monodisperse two-¯uid model with no source
can be recovered assuming that the bubble size distribution is single-valued at each position
and therefore the dissolution, breakup and coalescence terms are zero. Under these conditions
(33) reduces to:

@N

@t
� @�ujN�

@xj
� 0 �40�

and the continuity equation is obtained by multiplying by the bubble mass

@�rge�
@t
� @�rgeuj�

@xj
� 0: �41�

2.6. Two-¯uid model

The multigroup two-¯uid model is derived based on the single group two-¯uid model
developed over the years at RPI (Drew and Lahey, 1979; Arnold, 1988; Park, 1922;
Alajbegovic, 1994) and by others (Delhaye, 1981; Ishii, 1975). Eq. (33) will be solved along
with the momentum equations for the liquid and gaseous phases and the continuity equation
for the liquid arising from the two-¯uid model. The three dimensional two-¯uid model can be
written as:

@ekrk
@t
� @

@xj
�ekrkuk;j� � Sk; �42�

@ekrkuk;i
@t

� @

@xj
�ekrkuk;iuk;j� �

@

@xj
�ek�tk;ij � tRek;ij�� �Mk;i ÿ ekrkgdi3 �43�

where k= g or l denotes the gas group-g or the liquid phase, ek is the phasic volume fraction
at liquid or group-g, r k is the phasic density, uk,i is the velocity of phase-k, tk;ij and tRek;ij are the
viscous stress tensor and the turbulent stress tensor of phase-k, Mk,i is the interfacial
momentum transfer between the phases, and the last term on the right hand side of (2) is the
gravitational force.
We have included a mass source Sk in (42). In this work this global source is exclusively due

to gas dissolution into the liquid, which could be positive or negative. Since this process is very
slow, its e�ect on the momentum transfer between the phases is negligible. In addition, due to
the relatively small gas volume and density, this mass source is negligible for the liquid phase.
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Consequently, the liquid continuity equation reduces to:

@�elrl�
@t
� @

@xj
�elrlul;j� � 0 �44�

where the liquid density, r l, is considered to be constant.
Assuming that the inertia and shear stress tensors are negligible for the gas phase, we can

write the gas momentum equation for the group-g ( g=1, 2, . . . , NG) as

ÿ @

@xi
�egp� � egrggdi3 �Mg;i � 0 �45�

where the interfacial momentum transfer term for the liquid phase can be written as

Ml;i � ÿ
XNG

g�1
Mg;i: �46�

Expanding the interfacial exchange terms we can write the gas momentum equation for group-
g in the form (Carrica et al., 1997):

ÿ @�egp�
@xi
ÿ egrggdi3 ÿ p

@�1ÿ e�
@xi

�MVM
g;i �ML

g;i �MD
g;i �MTD

g;i � 0 �47�

where the source was separated into the virtual mass, lift, drag and turbulent dispersion force
contributions. The virtual mass term accounts for the e�ect of the acceleration of the liquid
surrounding the bubbles and is usually modeled as (Drew and Lahey, 1979):

Mvm
g;i � egrlCvm

��
@ul;i
@t
� ul;j

@ul;i
@xj

�
ÿ
�
@ug;i
@t
� ug;j

@ug;i
@xj

��
: �48�

The virtual mass coe�cient, Cvm, assumed to be 0.5, the value obtained for a spherical bubble
in dilute potential ¯ow (Lahey and Drew, 1990).
In the two-¯uid model, the lift force term is modeled after ensemble averaging forces on a

bubble immersed in a shear ¯ow, and can be expressed as (Drew and Lahey, 1987; Drew and
Lahey, 1990):

ML
g;i � ÿegrlCLeijkeklm�ul;j ÿ ug;j� @ul;l

@xm
: �49�

In (49) eijk is the third order permutation tensor and CL is the lift coe�cient, which has been
found to be about 0.1 for most practical two-phase air/water ¯ows (Wang et al., 1987).
The drag force may be expressed as:

MD
g;i � egrl

3

8

CD

Rg
�ul;i ÿ ug;i� j ug;r j �50�

where CD is the drag coe�cient, which, including void fraction e�ects, is given by (Ishii, 1987)

CD � 12

Reg�1ÿ el� �1� 0:168Re0:75g � �51�
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where Reg is the bubble Reynolds number based on the bubble radius at group-g, Rg, and the
magnitude of the gas/liquid relative velocity at group-g, ug,r. Eq. (51) reduces to the Stokes
drag coe�cient when the bubble Reynolds number is small and the gas volume fraction is
negligible.
The turbulent dispersion term is modeled as (Carrica et al., 1997):

MTD
g;i � ÿrl

eg
Ng

3

8

CD j ug;r j
Rg

vt
Scb

@Ng

@xi
�52�

where Scb is the bubble Schmidt number

Scb � vt
vb

�53�

and vb is the bubble di�usivity. Some experimental evidence (Loth and DeAngelis, 1996) shows
that Scb is between 0.7 and 1.0 for small particles. As no further information is available, in
this work we assume that the Schmidt number is 1. The e�ect of di�erent turbulent dispersion
coe�cients in monodisperse bubbly ¯ow around a ship has been studied in Paterson et al.
(1996).
Using (43), (45) and (46) we can write the two-phase modi®ed RANS liquid momentum

equation as

@ul;i
@t
�Ul;j

@ul;i
@xj
� 1

el

@

@xj
�elu0l;iu0l;j� �

ÿ 1

rl

@p

@xi
� v

el

@

@xj

�
el

�
@ul;i
@xj
� @ul;j
@xi

��
� elrl � �1ÿ el�rg

elrl
gdi3 �54�

where the third term on the left hand side is the Reynolds stress tensor, and is constituted as

ÿu0l;iu0l;j � vt

�
@ul;i
@xj
� @ul;j
@xi

�
ÿ 2

3
dijk �55�

and k=1/2 (u
0
l,iu

0
l,j) is the liquid turbulent kinetic energy.

2.7. Turbulence model

The Baldwin±Lomax model (Baldwin and Lomax, 1978) was used to calculate the turbulent
quantities for the liquid. In this algebraic model, the turbulent viscosity close to the wall and
the outer layer are calculated as:

vtl;w � l2
m j �o j; �56�

vtl;o � CkCcpFwkFKleb �57�
where lm is the mixing length, �o is the vorticity, Fwk is the wake function, FKleb is the
Klebano� intermittence function, and Ck and C cp are empirical constants of the model.
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The characteristic length, lm; is calculated in the near hull region as:

lm � ky
�
1ÿ exp

�
ÿ y�

A�

��
�58�

where y is the distance to the wall and y+ is its dimensionless form using the friction velocity.

For the bubble-induced turbulence, the model of Sato (1981) was used. In this model, bubble-

induced turbulence results in an additional turbulent viscosity as:

vtb �
XNG

g�1
1:2Rgeg j ug;r j �59�

wherein 1.2 Rg (group radius) is the characteristic length and the group relative velocity ug,r is

the characteristic velocity. Additionally, the total viscosity is calculated using linear

superposition (Lance and Bataille, 1991):

veff � v� vt � v� vtl � vtb: �60�
The liquid turbulent kinetic energy is not computed directly from this turbulence model, but

can be calculated assuming the following relationship between the mixing length and the eddy

viscosity of the k±e model:

k1f �
�
Clvtl
Cmlm

�2

�61�

where Cl � 0:4 and C m=0.09 are constants in the k±e model. The characteristic length, lm; is

calculated in the near hull region with (58), and the outer region and wake are assumed to be:

lm � Fwk � min

�
ymaxFmax;Cwkymax

u2diff
Fmax

�
=udiff �62�

where udi� is the maximum di�erence in liquid velocities in a plane ( y±z) perpendicular to the

axis of the ship.

The turbulent kinetic energy was also modi®ed to account for the e�ect of the bubbles. The

same linear superposition principle was applied for the bubble-induced kinetic energy yielding

(Lance and Bataille, 1991):

k � k1f � kb �63�
where kb is the turbulent kinetic energy induced by the bubbles and k 1f is the single-phase

turbulent kinetic energy, calculated from (61). This model may be considered valid for local

void fractions up to about 3%. For higher values, interactions between the bubbles may

increase the bubble-induced turbulent kinetic energy. The bubble-induced turbulence results in

an additional pseudo-turbulent kinetic energy as an extension of the single size form (Sato and

Sadatomi, 1981)
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kb � Cp

XNG

g�1
eg�1ÿ eg� j ug;r j2 �64�

and the dissipation of turbulent kinetic energy can be estimated by:

ek � 0:09
k2

vt
: �65�

2.8. Dimensionless equations

Nondimensionalizing the equations using a characteristic length L and velocity U0 (length
and velocity of the ship) and the gas density at normal pressure, and using the interfacial
momentum transfer terms, (48)±(52), (33), (44), (47) and (54) yield the ®nal system of
equations to be solved.

2.8.1. Bubble group-g number density equation

@N̂g

@t̂
� @�ûg;jN̂g�

@x̂j
� 1

m̂g�1 ÿ m̂g

�
min

�
dm̂

dt̂
; 0

�
N̂

�
g�1
ÿ 1

m̂g ÿ m̂gÿ1

�
min

�
dm̂

dt̂
; 0

�
N̂

�
g

�

1

m̂g�1 ÿ m̂g

�
max

�
dm̂

dt̂
; 0

�
N̂

�
g

ÿ 1

m̂g ÿ m̂gÿ1

�
max

�
dm̂

dt̂
; 0

�
N̂

�
gÿ1

� b̂�g ÿ b̂ÿg � ŵ�g ÿ ŵÿg : �66�

2.8.2. Liquid continuity equation

@el
@t̂
� @�elûl;j�

@x̂j
� 0: �67�

2.8.3. Liquid momentum equations

@ûl;i

@t̂
�
�
ûl;j ÿ 1

el

@

@x̂j

�
el
Ret

��
@ûl;i
@x̂j
ÿ 1

el

@

@x̂j

�
el
Ret

�
@ûl;j
@x̂i
�

ÿ @

@x̂i

�
p̂� 2

3
k̂

�
� 1

Ret

@

@x̂j

�
@ûl;i
@x̂j
� @ûl;j
@x̂i

�
� 1ÿ el

el

�
ÿ @

@x̂i

�
p̂� 2

3
k̂

�
� 1

Fr2

�
: �68�
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2.8.4. Gas group-g momentum equations

Cvm

��
@ûg;i

@t̂
�ûg;j @ûg;i

@x̂j

�
ÿ
�
@ûl;i

@t̂
� ûl;j

@ûl;i
@x̂j

��
� ÿCLeijkeklm�ûl; j ÿ ûg; j� @ûl;l

@x̂m

� ĈD�ûl;i ÿ ûg;i� j ur j ÿ @

@x̂l

�
p̂� 2

3
k̂

�
� di;3
Fr2
ÿ ĈD j ur j v̂t

Scb

1

N̂g

@N̂g

@x̂i
�69�

where the resulting dimensionless parameters are the Reynolds and Froude numbers and the
modi®ed drag coe�cient:

Ret � U0L

veff
; Fr � U0������

gL
p ; ĈD � 3

8
CD

L

Rb
: �70�

From this point on, the cap for the dimensionless variables will be omitted for simplicity.

3. Numerical method

3.1. Intergroup transfer

The numerical implementation of the coalescence terms w+ and wÿ is rather complex and
requires a model for the mass transfer between the groups. With the assumptions made for the
multigroup model we can de®ne a group collision kernel as:�

ml

�
mk

z�m;m0�T�m;m0� dm dm0 � CklTklNkNl: �71�

The coalescence source can be then calculated as:

C�g �
1

2

X
k�g

CklTklXgklNkNl �72�

where l is such that mgÿ1<mk+ml<mg+1 and Xgkl is a matrix with components having a
value between 0 and 1 that accounts for the amount of gas that is transferred from the
coalescence of two bubbles from groups k and l to the group-g

Xgkl �mk �ml ÿmgÿ1
mg ÿmgÿ1

�mk �ml < mg�;

Xgkl �mk �ml ÿmg�1
mg ÿmg�1

�mk �ml > mg�: �73�

If the group masses are chosen such as the mass interval is constant, the matrix Xgkl will be
®lled with 1 and 0, because the sum of the masses of any two groups will be coincident with
the mass of other groups. However, if the group masses are chosen with non constant intervals
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in mass, the daughter bubble will generally not have a mass coincident with one of the group
masses. In this model the gas is transferred to the two nearest groups to the sum of the masses
k and l using a linear distribution. This implies that the total mass mk+ml will be distributed
linearly between the groups g and g+1, or between the groups gÿ1 and g.
On the same grounds, the losses due to coalescence can be calculated as:

Cÿg �
XNG

k�1
CgkTgkNgNk: �74�

For the breakup sources, the procedure is similar. After integration of (9) we can write the
bubble breakup source terms for group-g as:

b�g �
XNG

k�g
bkNkXgk �75�

where bk is the total breakup rate evaluated at the mass of the group-k. The matrix Xgk is
de®ned using the same assumptions as in the case of the mass conservation matrix Xgkl for the
coalescence case, thus resulting in a mass conservation matrix of the form:

Xgk � 2
mk=2ÿmgÿ1
mg ÿmgÿ1

�mgÿ1 < mk=2 < mg�;

Xgk �2mk=2ÿmg�1
mg ÿmg�1

�mg�1 > mk=2 > mg�;

Xgk �0 otherwise �76�
and the sink terms are calculated as

bÿg � bgNg: �77�
In the multigroup implementation, the bubbles of the minimum size group that were dissolving
were considered lost. Additionally, no breakup was allowed in this group, which is reasonable
if it has a very small bubble size. In the case of a coalescence event of any bubble with a
bubble in the last group, the mass was conserved in the event incrementing accordingly the
number density in the last group, because no bigger bubbles than the largest group were
allowed.

3.2. Coordinate transformation

In order to accommodate the complex geometry of the hull of the ship, the equations were
transformed from the physical domain with Cartesian coordinates (x, y, z) into the
computational domain with curvilinear coordinates (x, Z, z). Following Stern et al. (1996), the
transformation was chosen such that in the computational domain, the computational cells are
cubic with sides of unity length. The transformation relations for an arbitrary scalar f and
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vector u in conservative form are (Thompson, 1982)

r � u � 1

J

@

@xj
�b j

iui�; �78�

rfji �
1

J
b j
i

@f
@xj
; �79�

r2f � gij
@2f
@xi@xi

� fi
@f
@xi
; �80�

@f
@l
� @f
@t
ÿ 1

J
bji
@xi
@t
@f
@xj

�81�

and the Jacobian of the transformation and the geometrical coe�cients are calculated as

b j
l � elmn

@xm@xn
@xj@xk

�82�

gij � 1

J2
bimb

j
m; �83�

fi � 1

J

@

@xj
�Jgij�; �84�

J �
xx xZ xz
yx yZ yz
zx zZ zz

������
������ �85�

where the contravariant and modi®ed contravariant velocities for a velocity vector u=(U, V,
W) are de®ned as

�Ui � 1

J
bijuj �

1

J
�bi1U� bi2V� bi3W� �86�

Ûi � bijuj � �bi1U� bi2V� bi3W�: �87�
Eqs. (66)±(69) were transformed using the transformation relations (78)±(81) yielding the ®nal
set of equations.

3.2.1. Liquid continuity equation

@�1ÿ e�
@t

� 1

J

@��1ÿ e�Ûl; j�
@xj

� 1

J
b j
i

@xi
@t
@�1ÿ e�
@xj

: �88�
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3.2.2. Liquid momentum equation
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@xj

�
p� 2

3
k

�
� @i3
Fr2

�
: �89�

3.2.3. Gas group-g number density equation

@Ng

@t
� 1
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J
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@xi
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gÿ1
: �90�

3.2.4. Gas group-g momentum equation

Cvm
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p� 2

3
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Ng
ĈD j ur j v̂t � v̂b
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b j
i

J

@Ng

@xj
:

�91�

It should be noted that, in the case we study in this paper, the terms due to the temporal
variation of the grid are zero because we assume no surface de¯ection. Then the shape of the
free surface, and consequently the grid, are not changing with time.

3.3. Solution method

The gas phase conservation equations were solved using a control-volume upwinding
approach (Patankar, 1980). Even though the full upwinding method is only ®rst order
accurate, a more complex method is not necessary for the gas momentum equations because
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the equations are source-dominated and, if not for the virtual mass term, the equations would
be algebraic.

For the group number density equations a TVD ¯ux limiter was added to reduce the
arti®cial numerical di�usivity (Roe, 1985; Sweby, 1985). The resulting scheme is second-order
accurate in 1-D advection problems and has proved to successfully reduce the numerical
di�usion avoiding spurious oscillations in hyperbolic problems in two or three dimensions
(Tamamidis and Assanis, 1993; Saxena and Ravi, 1995).

A control volume in the computational domain has unit length on each side and the
convention used to denote the neighboring nodes is N, S, E, W, D and U for north, south,
east, west, down and up, respectively. The properties at the faces of the control volume are
calculated by linear interpolation and are represented with lower case letters. The group-g
number density Eq. (90) are integrated using a simple ®rst order implicit formulation for the
time derivative. This results in the following scheme:

Ng;P ÿNnÿ1
g;P

Dt
�max�V̂w; 0��Ng;W � Coj�rÿw �DNÿg;w� �min�V̂w; 0��Ng;P ÿ Coj�r�w �DN�g;w�
ÿmax�V̂e; 0��Ng;P � Coj�rÿe �DNÿg;e� ÿmin�V̂e; 0��Ng;E ÿ Coj�r�e �DN�g;e�
�max�Ûu; 0��Ng;U � Coj�rÿu �DNÿg;u� �min�Ûu; 0��Ng;P ÿ Coj�r�u �DN�g;u�
ÿmax�Ûd; 0��Ng;P � Coj�rÿd �DNÿg;d� ÿmin�Ûd; 0��Ng;D ÿ Coj�r�d �DN�g;d�
�max�Ŵs; 0��Ng;S � Coj�rÿs �DNÿg;s� �min�Ŵs; 0��Ng;P ÿ Coj�r�s �DN�g;s�
ÿmax�Ŵn; 0��Ng;P � Coj�rÿn �DNÿg;n� ÿmin�Ŵn; 0��Ng;N ÿ Coj�r�n �DN�g;n� � SNg

�92�
where SNg

is the total source, C0=0.5 and all the terms are calculated at `time' step n except
when indicated by a superscript nÿ1. In (92) the gradients DN and the `superbee' compressive
¯ux limiter function of Roe (1985) are de®ned as:

DN�g;e �Ng;EE ÿNg;E; DNÿg;e � Ng;P ÿNg;W;

DN�g;w �Ng;E ÿNg;P; DNÿg;w � Ng;W ÿNg;WW �93�
etc.

j�r� � max�0;min�2r; 1�; min�r; 2�� �94�
where r is the ratio of consecutive gradients and is de®ned as:

rÿe �
Ng;E ÿNg;P

Ng;P ÿNg;W
; r�e �

Ng;P ÿNg;W

Ng;E ÿNg;EE
;

rÿw �
Ng;P ÿNg;W

Ng;W ÿNg;WW
; r�w �

Ng;W ÿNg;P

Ng;P ÿNg;E
etc: �95�

For the momentum equations Co=0 and the source term is partitioned into terms that depend
on the solution at point P and those that are independent of the solution at P, incorporating
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the former term into the diagonal of the matrices, resulting in a more diagonal dominant and
stable system. Complete details of the computational method used to solve the gas equations
have been given by Carrica et al. (1997).
The liquid momentum and mass conservation equations were solved with the CFDSHIP±

IOWA code developed by Tahara et al. (1992) and Stern et al. (1996), in a modi®ed form to
account for the presence of gas bubbles, as shown in (88) and (89). Here we will only give an
outline on the numerical method. For details the reader should see the references cited. The
equations are reduced to algebraic form using a 12-point ®nite-analytic method. A pressure
equation is obtained using the continuity equation in discrete form on as staggered-grid control
volume. The overall solution method for the liquid equations is based on the PISO algorithm,
in which the velocity and pressure ®elds are coupled using an iterative procedure assuming that
the liquid volume fraction is known. In a ®rst step, the pressure equation is solved using a
tridiagonal algorithm and the method of lines to get an intermediate pressure. In the second
step, the intermediate pressure is used to solve explicitly the momentum equation and the
pressure updated.

3.4. Boundary conditions and solution domain

The FF-1052 is a Navy frigate which is L=126.7 m long with a transom stern and a
bulbous bow to accommodate a sonar dome. The nominal speed was 27 knots (13.5 m/s),
which results in full-scale Reynolds and Froude numbers of Re=1.7� 109 and Fr=0.39. The
computational conditions for the liquid were zero Froude number and Re=1� 106. To
calculate higher Reynolds numbers it would be necessary to re®ne the grid (Paterson et al.,
1996). However, the Froude number in the gas equations must be kept as in the full-scale ship
to obtain proper bubble behavior.
The calculation grid had 78� 21�22 (36,036) nodes in the x, Z and z directions in H-grid

topology. Cuts of the grid are shown in Fig. 2. The ®rst row of nodes is located within y+<2,
in accordance to the Baldwin±Lomax turbulence model requirements.
The solution domain is shown in Fig. 2. A two-block approach was used to accommodate

the regions from the inlet to the stern (block 1, x/L= ÿ0.4 to x/L=1) and in the wake (block
2, x/L=1 to x/L=2). At the interface between the two blocks, a parametrically-mapped
bilinear-interpolation scheme was used to interpolate all the dependent variables in the
overlapping planes in each block (Stern et al., 1996). The radial distance from the axis extends
to a maximum r/L=1. Only half of the domain was calculated, taking advantage of the
symmetry of the problem.
The boundary conditions for the liquid and gas at the di�erent boundaries in the physical

domain are:

3.4.1. Inlet, x/L= ÿ0.4
It was assumed that the inlet is far enough from the bow of the ship so that free stream

conditions were used. The liquid velocities and pressure gradient are:

ul � ug � 1; vl � vg � 0; wl � wg � 0;
@p

@x
� 0: �96�
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For the gas phase, it was assumed that no bubbles were present in the background ocean, so
for each group the bubble number density was set to zero and the velocity was set equal to the
liquid velocity. The only bubbles present will be those simulating a bow breaking wave.

3.4.2. Exit, x/L=2
For the liquid, zero gradient conditions were used

@ul
@x
� @vl
@x
� @wl

@x
� @p
@x
� 0 �97�

and for the gas equations, free ¯ux conditions were used. This means that the bubbles are free
to leave the computational domain and the bubble concentration gradients, to calculate the
turbulent dispersion force, are set to zero in the axial direction.

Fig. 2. Multi-block grid. The z=0, x/L=0.05 and x/L=1.5 planes are shown along to the hull of the ship. All the
grid is on the starboard side of the ship (right), but the planes in the left were ¯ipped for clarity.
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3.4.3. Hull and centerplane, Z=0 and z=0
Solid wall (hull) or symmetry conditions (centerplane), there was no gas or momentum ¯ux.

For the liquid equations, the conditions were:

ul � 0; vl � 0; wl � 0 �hull�; �98�

@ul
@y
� @wl

@y
� @p
@y
� vl � 0 �centerplane�: �99�

3.4.4. Outer boundary, at Z= Zmax

Free ¯ow for the gas. For the liquid equations

3.4.5. Free surface
The bubbles are free to leave the control volume and no bubbles are allowed to enter except

at the entrance region that will be discussed later. For the liquid Fr=0 conditions were used:

@ul
@z
� @vl
@z
� wl � @p

@z
� 0: �101�

For the free ¯ow conditions, the ¯ux through the free ¯ow surface was calculated using the
velocity at the point P. For instance, if the free ¯ow surface is given by z= zmax, the balance
equation for f (f= Ng, ug, vg, wg) in one control volume at zmax reads:

CPfP �
X

k�u;d;e;w;s
Ckfk � CnfP � Sf;P: �102�

The condition of no gas or momentum ¯ux was calculated by setting the ¯ow through the
appropriate control volume face equal to zero. For example, at the hull or centerplane (Z=0)
the west face must have zero convection, so this was speci®ed as:

CPfP �
X

k�u;d;e;s;n
Ckfk � Sf;P: �103�

3.5. Air entrainment

The air entrainment mechanisms for a surface ship is currently a subject of active research.
This gas entrainment has two main sources. One source is bubbles generated by air entraining
processes related to surface-hull interaction such as breaking and spilling waves at the bow and
stern and boundary layer entrainment along the hull. The other source is the bubble
production by the propellers that can cause growth of air bubbles in low pressure regions,
mainly under cavitation conditions. Vapor cavitation bubbles can act as nucleation sites for
di�usion-generated air bubbles. Unfortunately, the present knowledge in the subject is
insu�cient to properly simulate the gas entrainment processes under the given conditions.
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Therefore, in this work we will assume that the gas is being entrained at the bow due to
breaking waves situated between x/L=2.7� 10ÿ3 and x/L=2.9�10ÿ2 and from 0.4 m to
1.7 m from the hull. The liquid and gas were assumed to be plunging in this area with vertical
velocity ÿ2.7 m/s, corresponding to a wave height of about 0.4 m, and the total void fraction
was assumed to be 10%, in accordance with the typical void fractions obtained in plunging jet
experiments (Bonetto and Lahey, 1993). The bubble size distribution was assumed to be that
measured by Cartmill and Su (1993), who studied the bubble radius distribution for a breaking
wave in salt water from 34 mm to 1200 mm. A total of 15 size groups were used with bubble
radius at normal pressure between 10 mm and 1000 mm.
The system used by Cartmill and Su was not able to measure bubbles with radii smaller than

34 mm, and in that region their results were extrapolated. A similar approximation was used
for bubbles larger than 1000 mm. The group limiting mass values (34) were the average of the
two consecutive group masses and m 1ÿ1/2=0 and m 15+ 1/2=1. This distribution is shown in
Table 1, and we will refer to it as the reference distribution.
Numerically, this set of assumptions results in a Dirichlet boundary condition for both

group void fraction and velocity, to be applied in the air entrainment region.

3.6. Solution procedure

The equations were solved iteratively using a pseudo-transient marching process in the x-
direction and the method of lines at each perpendicular plane. The convergence was evaluated
measuring the L2 norm of the di�erent independent variables. A variable was considered
converged when the decrease in the L2 norm was more than three orders of magnitude.
To achieve convergence, it was necessary to overrelax the gas momentum equations with

increasing relaxation constants of about 1� 10ÿ4 in the last iterations. Higher relaxation

Table 1

Size distribution at the air entrainment boundary conditions

Group mg (kg) r g,0 (mm) Ng (1/m
3) e g (%)

1 4.82�10ÿ15 10.0 2.61�1010 0.0109
2 4.46�10ÿ14 21.0 6.31�109 0.0245
3 2.03�10ÿ13 35.0 2.97�109 0.0524

4 7.20�10ÿ13 53.0 1.69�109 0.106
5 2.24�10ÿ12 77.5 1.04�109 0.204
6 6.34�10ÿ12 109.6 6.01�108 0.332

7 1.66�10ÿ11 151.0 2.95�108 0.426
8 4.05�10ÿ11 203.5 1.51�108 0.531
9 9.26�10ÿ11 268.0 8.08�107 0.651
10 2.00�10ÿ10 346.5 4.50�107 0.784

11 4.11�10ÿ10 440.5 2.60�107 0.931
12 8.07�10ÿ10 551.5 1.56�107 1.09
13 1.52�10ÿ9 680.5 9.56�106 1.26

14 2.75�10ÿ9 829.5 6.06�106 1.45
15 4.81�10ÿ9 1000.0 5.13�106 2.14
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constants led to strong oscillations in the solution near the wall. These oscillations disappeared
for large Schmidt numbers Scb, showing the convenience of running ®rst a high Schmidt
number case (Scb=5) and then using this solution as the starting point for the case with
Scb=1 and more relaxation.
The program needed 10 megawords of memory to run on a Cray C90 machine. Each case

took about 200 CPU h to converge. Approximately 30% of this CPU time was consumed in
the intergroup transfer subroutines.

4. Results and discussion

4.1. Size distribution

The bubble size distribution is of major importance in the two-phase ¯ow around a ship for
several reasons. On one hand, the acoustical response on the wake of the ship is strongly
dependent on bubble radius distribution. On the other hand, the two-phase ¯ow and size
distribution in the wake depends on the interactions between the bubbles and the ship and with
each other, as well as with the size distribution at the regions of air entrainment.
The simplest case that can be studied of a polydisperse two-phase ¯ow is that with no

intergroup transfer source, in other words with no dissolution, breakup or coalescence. In this
case, the bubbles cannot change their mass, however the bubble size distribution still may
change because of accumulation or depletion of certain bubble sizes in certain regions. Also, all
the groups contribute to the coupling of the liquid through the total void fraction.
The study of the bubble size distribution was made for ®ve di�erent conditions: with no

intergroup transfer source, with a coalescence source, with a breakup source, with a dissolution
source and with all the sources. In this way the individual e�ect of each of the intergroup
transfer terms can be evaluated, and the sensitivity to each exchange process assessed.
Figures 3±5 show the distribution function, group number density and group void fraction

normalized to 1.0 at the hull of the ship at x/L=0.95, 25 cm below the surface, close to the
point where the maximum void fraction occurs in the case with no intergroup sources. The ®ve
di�erent conditions explained above are shown. The total number density is 1.65� 1010 l/m3

for the case with no intergroup exchange and 2.22� 1010 l/m3 for the complete model, this last
number being higher mainly due to the e�ect of tipstreaming, which generates a large amount
of small bubbles. The total absolute void fraction reaches 0.261 for the complete model and
0.263 with no intergroup sources, but in the complete model, the void fraction is more evenly
distributed compared to the model with no sources, in which case, the big bubbles are
responsible for most of the gas present. When only coalescence is included, the concentration
of small bubbles falls considerably due to the high collision rate observed in this region of very
high void fraction due to buoyancy-driven gas accumulation. Also, a high bubble breakup rate
occurs all along the hull due to the high shear rates present in the boundary layer. This is
evident from the depletion of large bubbles that is predicted in the breakup case compared to
the case with no sources, and from the peak in the distribution at small bubble sizes resulting
from tipstreaming. Also, dissolution plays a very important role in this region because of the
low velocities near the hull and the consequent large transit times that allow large intergroup
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and mass transfers. As can be seen in (27) and (28), the radius change rate due to dissolution is
higher for small bubbles. The complete multigroup case shows that, at this position, breakup
plays the most important role in the determination of the shape of the size distribution.
Figures 6±8 show the e�ect of the di�erent intergroup sources on the distribution function,

group number density and group void fraction normalized to 1 at the near wake region of the
ship (x/L=1.5, y/L=0.04). The point is coincident with the main stream of bubbles in the
wake and is located 2.15 m below the surface of the ocean, where the hydrostatic pressure
e�ects become important. At this depth, the big bubbles have naturally disappeared by

Fig. 4. E�ect of the di�erent intergroup transfer mechanisms on the normalized group number density at x/L=0.95
at the hull of the ship, 25 cm below the water surface.

Fig. 3. E�ect of the di�erent intergroup transfer mechanisms on the normalized distribution function at x/L=0.95
at the hull of the ship, 25 cm below the water surface.
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buoyancy and their contribution to the void fraction has been drastically reduced, thereby

resulting in a peak in the group void fraction for medium-sized bubbles. In the case of only

breakup, an additional peak appears for the bubbles arising from tipstreaming, but this peak is

not present in the full model. At this depth in the wake, breakup and tipstreaming have less

e�ect than in the near hull region. This is probably due to the fact that the bubbles accumulate

at the hull, under the ship, and therefore, are subject to strong breakup. They will detach at

the stern at about 1 m depth. From there only a few of them can reach deeper points due to

turbulent dispersion. At this point, dissolution appears to be the most important intergroup

Fig. 6. E�ect of the di�erent intergroup transfer mechanisms on the normalized distribution function at the wake, at
x/L=1.5, y/L=0.04, z= ÿ2.15 m.

Fig. 5. E�ect of the di�erent intergroup transfer mechanisms on the normalized group void fraction at x/L=0.95 at
the hull of the ship, 25 cm below the water surface.
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transfer mechanism for determining the size distribution. This is evidenced by the much smaller
dimensionless total number density in the complete multigroup model (3.66� 108 l/m3)
compared to the case with no intergroup exchange sources (5.95� 109 l/m3). This loss of small
bubbles causes the total void fraction to fall from 0.004 in the case with no sources to 0.0029
in the complete model.
Shown in Figs. 9±11 are the distribution function, group number density and group void

fraction at di�erent locations in the calculation domain for the complete intergroup source.
The locations are at the hull at the same point as in Fig. 3, at the wake at x/L=1.5,

Fig. 8. E�ect of the di�erent intergroup transfer mechanisms on the normalized group void fraction at the wake, at
x/L=1.5, y/L=0.04, z= ÿ2.15 m.

Fig. 7. E�ect of the di�erent intergroup transfer mechanisms on the normalized group number density at the wake,

at x/L=1.5, y/L=0.04, z= ÿ2.15 m.
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y/L=0.04 and depths 0 m, 2.15 m and 6 m. The reference distribution is also shown. The total

number density and void fraction are (2.22� 1010 l/m3, 0.261), (5.06� 108 l/m3, 0.0163),

(3.66� 108 l/m3, 0.0029) and (9.54� 106 l/m3, 0.00003) at the hull, and at the wake at 0, 2.15

and 6 m, respectively. At the air entrainment point, these values are (3.93�1010 l/m3, 0.1). It

can be seen that gas accumulation occurs at the hull, mainly due to large bubbles. Due to

tipstreaming, a signi®cant number of small bubbles are generated in this region, but as their

volume is small, they have a very small void fraction. In the wake, the e�ects observed at the

hull are less important at deeper positions. The density of big bubbles decreases very fast at

greater depths, where only small bubbles remain.

Fig. 9. Distribution function at di�erent locations: at the hull (same as Fig. 5); at the wake, at x/L=1.5,

y/L=0.04, z=0 m, ÿ2.15 m, ÿ6 m and at the air entrance.

Fig. 10. Group number density at di�erent locations, at the same points as in Fig. 9.
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To clarify the size distribution at di�erent locations, the normalized group void fraction at
these locations is shown in Fig. 12. It can be seen that the peak in the void fraction
distribution moves to smaller sizes as we go deeper in the wake, while at the hull, and for the
reference distribution, the big bubbles dominate the void fraction distribution.

4.2. Integral quantities

The total bubble number density, interfacial area density and void fraction (2), (3) and (5)
were calculated in the solution domain for the case without intergroup sources and for the
complete model with breakup, coalescence and dissolution. In addition, the bubble average

Fig. 11. Group void fraction at di�erent locations, at the same points as in Fig. 9.

Fig. 12. Normalized group void fraction at di�erent locations, at the same points as in Fig. 9.

P.M. Carrica et al. / International Journal of Multiphase Flow 25 (1999) 257±305288



radius, weighted with the bubble number density, and the gas super®cial velocity were
calculated and are de®ned as:

�Rb �

XNG

g�1
NgRg

XNG

g�1
Ng

; �104�

ji �
XNG

g�1
ug;ieg: �105�

Fig. 1 shows surface total void fraction contours and the FF 1052 hull. A distinct wake is
formed that loses strength as the big bubbles are lost through the surface.

The dimensionless gas super®cial velocity is shown in Fig. 13 for the complete multigroup
model. The transversal cuts are at x/L=0.25, 0.6, 0.95 and 1.5. In the left side, contour lines
of the axial component ( j1) are shown, and in the right side, the vector plots of the transversal
components ( j2, j3) are depicted. It can be seen that, as the bubbles move towards the stern,
there is some gas accumulation at the hull. The super®cial velocity is always very small at the
hull, however it is generally not zero because the gas velocity does not have to satisfy the zero
slip condition. At x/L=0.25 there is strong e�ect of the air entrainment boundary condition,
and many bubbles are still being forced downwards by the liquid.

Fig. 14 shows the total void fraction at x/L=0.25, 0.6, 0.95 and 1.5 for the cases of no
intergroup source (left) and full model (right). Close to the hull, both pro®les look qualitatively
similar, though the constant void fraction lines are a little farther from the hull, showing more
accumulation near the hull in the case with no intergroup exchange. In the wake, some
important di�erences arise: for large depths, the case with sources shows less void fraction,
mainly due to the e�ect of dissolution that reduces the amount of gas transported by the small
bubbles that are mainly present in that location. On the other hand, close to the surface, the
smaller number of big bubbles in the complete model reduces the loss of gas through the
surface, resulting in a higher void fraction in this region.

Fig. 15 depicts the total bubble number density at the same crossplanes as Fig. 14, under the
same conditions. In the case with no intergroup exchange, the total number density shows a
peak near the hull at x/L=0.25. This peak comes closer to the wall downstream as the
bubbles accumulate, but at the wake, the big bubbles disappear through the surface. The
smaller bubbles remain, resulting in a peak below the free surface. The case with dissolution,
breakup and coalescence shows a di�erent behavior. The small bubbles very soon dissolve or
coalesce in the near wall region, and thus, the total number density is governed by medium size
bubbles that attach to the hull. This causes the total number density to peak at the hull all
along the ship, and at the free surface in the wake. The total number density is also
considerably smaller than for the case with no intergroup exchange.

The total interfacial area density is shown in Fig. 16. The behavior is similar to that
observed in the void fraction, with interfacial area accumulation at the hull, that becomes more
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Fig. 13. Dimensionless gas super®cial velocity at x/L=0.25 (upper left), x/L=0.6 (upper right), x/L=0.95 (lower
left) and x/L=1.5 (lower right). In each cut, the axial component (left) and the transversal components (right) are
shown. The vector size has been augmented in x/L=1.5 with respect to the other cuts by a factor of 30 for clarity.
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Fig. 14. Void fraction at x/L=0.25 (upper left), x/L=0.6 (upper right), x/L=0.95 (lower left) and x/L=1.5
(lower right). In each cut, the complete model case (right) and the case with no intergroup sources (left) are shown.
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Fig. 15. Number density (1/m3) at x/L=0.25 (upper left), x/L=0.6 (upper right), x/L=0.95 (lower left) and

x/L=1.5 (lower right). In each cut, the complete model case (right) and the case with no intergroup sources (left)
are shown.
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Fig. 16. Interfacial area density (m2/m3) at x/L=0.25 (upper left), x/L=0.6 (upper right), x/L=0.95 (lower left)
and x/L=1.5 (lower right). In each cut, the complete model case (right) and the case with no intergroup sources

(left) are shown.
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Fig. 17. Average radius (mm) at x/L=0.25 (upper left), x/L=0.6 (upper right), x/L=0.95 (lower left) and
x/L=1.5 (lower right). In each cut, the complete model case (right) and the case with no intergroup sources (left)

are shown.
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evident for the full model. In the wake, higher interfacial area is present near the surface in the
full model, while deeper, the interfacial area is higher for the model with no sources.
The e�ect of the intergroup transfer sources on the average radius is very large. As shown in

Fig. 17, the average radius is considerably larger for the case with intergroup exchanges than
without them. The case without intergroup exchanges has maximum average radius at the hull
or at the free surface because of the accumulation of large bubbles or the e�ect of the
hydrostatic pressure. When coalescence and dissolution are present, the number of small
bubbles decreases considerably and therefore the maximum radius is larger. Near the hull, the
tipstreaming ®xes the average radius on the order of 20±30 mm, and in the wake the average
radius size is about three times the size obtained without sources. This result is very important
because the bubble size will determine the acoustical response of the wake, and shows the
importance of a proper modeling of the di�erent mechanisms of intergroup transfer.
The super®cial velocity through the free surface is shown in Fig. 18 for the cases with the

full model (right) and without intergroup exchanges (left). As can be seen in the ®gure, most of
the gas leaves the surface in the ®rst ship length. If the gas entrance region is put closer to the
hull, this e�ect would be more noticeable because more bubbles would be convected below the
hull, coming back to the surface at the stern. This air liberation at the stern can be easily
observed in this type of ship, though it is not clear at present if the primary source of those
bubbles is breaking and spilling waves or aeration due to the propeller, or both. This result
shows that it is very likely that breaking bow waves are responsible for at least part of the air
leaving the free surface at the wake near the stern. In the case without intergroup exchange,
the air liberation occurs closer to the hull than in the full model simulation.

Fig. 18. Dimensionless vertical super®cial velocity at the free surface. The left side shows the case without
intergroup sources and the right side the complete model.
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5. Uncertainty analysis

A grid sensitivity analysis has been performed, in an attempt to assess the numerical
uncertainties of the calculations. Additionally, some sensitivity analysis to the model constants
has been performed and reported elsewhere (Paterson et al., 1996; Carrica et al., 1997).
Modeling uncertainties must be evaluated compared to experimental data and will be assessed
in future works.
A careful analysis of the uncertainties for free-surface ¯ow at Re=2.01�107 around an FF-

1052 is discussed by Stern et al. (1996). They found that the thrust, friction and total resistance
coe�cients change about 2% between grids for grid sizes between 400,000 to 906,000 nodes.
They estimate the total uncertainty in the propelled case, based on integral quantities, is on the
order of 4%, though they recognize that their estimation may be optimistic. It must be noticed
that at that high Reynolds number, the proper discretization of the boundary layer is critical to
predict friction coe�cients, thus forcing the use of very ®ne grids.
The assessment of the uncertainties in two-phase ¯ow is much more complex, and a

complete analysis has not been performed yet. The tremendous computational cost involved in
such analysis has limited the number of test runs done to the present.
A grid convergence analysis for the variable size, monodisperse two-phase ¯ow around a

FF-1052 under free-surface conditions at a moderate Reynolds number (Re=2� 106) has been
done by the authors (Carrica et al., 1997). The study was done in 4 grids, with 36,036, 50,820,
75,020 and 176,000 nodes. The main conclusions drawn from that analysis are: the maximum
void fraction close to the hull changes about 2.5% between the ®ner grids, and about 20%
between the two coarser grids. However, outside the boundary layer, the change in the void
distribution was less than 2% for all grids. It was also found that the better resolution of the
boundary layer with ®ner grids has a limited e�ect on the overall bubble size and spatial
distribution in the near wake. Other parameters depending on the ¯ow near the hull, such as
free surface shape, cannot be properly predicted with the coarsest grid.
The zero Fr number case (¯at surface) can be simulated with coarser grids. Previous

experience with several grids ranging from 7000 to 75,020 nodes have shown that at
Re=1�106 the single-phase ¯ow ®eld can be simulated reasonably with small size grids.
Based on this experience, we chose the coarsest grid (36,036 nodes) that shows reasonable
results. The complete multigroup case was also tested in a ®ner grid (110� 31� 22=75,020
nodes). Between these two grids, the change in the pressure and friction coe�cients was about
3%.
As in the monodisperse case, the main features of the two-phase ¯ow changed only slightly.

The maximum void fraction at the wall showed an increment of 1.5% for the ®ne grid with
respect to the coarse grid, while the number density increased 4%. Outside the boundary layer
and at the ship's wake, the changes were much smaller, lower than 2% for all the variables at
each location.
The better resolution of the boundary layer for the ®ne grid compared to the coarse grid

caused an increment of the breakup rate in the near-wall region, then slightly shifted the size
distribution towards smaller bubbles, showing increases of up to 5% in the number density in
the smallest groups. This increment of the group number density for small bubbles causes, in
turn, an increment of the total number density of a maximum of 4%. However, this change in
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the size distribution in the near wall region has a small e�ect on the size distribution at the
wake, mainly because the boundary layer is thin.
Even though the numerical uncertainty analysis is not conclusive, the limited number of tests

performed to the present show that the grids needed for polydisperse two-phase calculations
have to be at least the same size as the single-phase grids if we want to properly describe the
breakup, coalescence and dissolution rates in the near-wall regions. Thus, to run model-scale
cases (Re 02� 107) we will need grids on the order of 500,000 nodes.

6. Conclusions and further work

A three dimensional polydisperse two-¯uid model was presented. The model was used to
calculate the two-phase bubbly ¯ow around a surface ship assuming zero Froude number (i.e.
ignoring the free surface de¯ection) and scaled Reynolds number. Air bubbles were introduced
using a simulated breaking bow wave air bubble entrance boundary condition. From the
analysis of the results, it follows that the intergroup transfer mechanisms play an important
role in the determination of the two-phase ¯ow ®eld and the size distribution. The predictions
show the relative importance of the intergroup transfer mechanisms and demonstrate the
possibility that breaking wave actions near the blow of the ship can have a signi®cant e�ect on
the wake.
Much work is still needed to obtain reliable quantitative results for the polydisperse two-

phase bubble ®eld around a ship. First, the air entrainment boundary conditions must be
determined in terms of variables involved in the solution of the problem, such as wave height,
wave steepness, velocity gradients, turbulence, propeller characteristics, etc. Valid models
relating the air entrainment to the problem variables is not yet available, and more
experimental work is needed to be performed to obtain it. Second, there is much work to do to
obtain validated kernels for coalescence and breakup. Lastly, some re®nements are needed in
the model for dissolution.
Even though the collision kernels are rather well studied and understood, mainly due to their

application in coagulation kernels for aerosols (Williams and Loyalka, 1991), the probability of
coalescence needs some re®nements if we are to have a reliable predictive tool. The coalescence
rate, and, in our case, the resulting two-phase ¯ow, is highly dependent on the minimum
contact time needed for coalescence, therefore, this parameter, mainly in terms of its
dependence on surfactants, needs more accurate modeling. In addition, due to the presence of
surfactants, coalescence may be inhibited in the ocean and then the formation of clusters of
bubbles becomes possible, principally in the near-hull region where bubbles tend to
accumulate. As clusters can not be treated the same way as bubbles, more work in this area is
necessary.
In the case of the breakup of small bubbles under velocity gradients, there exists a criterion

to estimate the minimum radius for breakup. Nevertheless, to the knowledge of the authors, no
study exists relating the breakup frequency to the ¯ow and bubble parameters. In addition, the
model for bubble tipstreaming is inadequate, since only a few experiments have been done and
almost no quantitative data are available. In every case, the e�ect of di�erent parameters, such
as turbulence and void fraction, and bubble breakup in the presence of strong velocity

P.M. Carrica et al. / International Journal of Multiphase Flow 25 (1999) 257±305302



gradients, needs to be studied. Additionally, it must be noticed that proper discretization in the
near-wall region is necessary to predict the velocity gradients that strongly in¯uence the
breakup rate. This will require the use of dense grids in the boundary layer or proper modeling
of the breakup terms in this region if a wall law together with a two-equation turbulence
model is to be used. Furthermore, in the case of higher Reynolds number ¯ows, the turbulence
induced breakup could be signi®cant.
It may be necessary to relax the assumption in the dissolution modeling that the

concentration of dissolved air in water is the concentration at saturation at atmospheric
pressure. The additional dissolution of air bubbles can appreciably increase the concentration
of air in the liquid, thereby decreasing the dissolution rate. This may be important in the near
hull region and near the propeller. To account for this e�ect, it would be necessary to add a
new conservation equation to calculate the air concentration in the liquid.
Finally, the Baldwin±Lomax turbulence model is overly simple, and while it is probably

adequate for predicting the wave structure around ships, it is not appropriate for bubble
dispersion. In this model, the turbulent kinetic energy and its dissipation are not available and
are coarsely estimated. Errors in the turbulent kinetic energy dissipation may also lead to
incorrect estimations of the coalescence and breakup frequencies due to turbulence. The
implementation of a two-equation turbulence model for two-phase ¯ow is the next
improvement on this regard.
In spite of all the modeling uncertainties, the three-dimensional polydisperse multigroup

model presented herein for bubbly ¯ow around a ship has demonstrated that the main features
of the two-phase ¯ow and bubble size distribution of the bubbly ¯ow around a surface ship
can be predicted.
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